direct product, metabelian, supersoluble, monomial, A-group
Aliases: C5×D52, C52⋊6D10, C53⋊1C22, (C5×D5)⋊C10, C5⋊D5⋊2C10, C5⋊1(D5×C10), C52⋊3(C2×C10), (D5×C52)⋊1C2, (C5×C5⋊D5)⋊1C2, SmallGroup(500,50)
Series: Derived ►Chief ►Lower central ►Upper central
C52 — C5×D52 |
Generators and relations for C5×D52
G = < a,b,c,d,e | a5=b5=c2=d5=e2=1, ab=ba, ac=ca, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >
Subgroups: 344 in 72 conjugacy classes, 20 normal (8 characteristic)
C1, C2, C22, C5, C5, C5, D5, D5, C10, D10, C2×C10, C52, C52, C52, C5×D5, C5×D5, C5⋊D5, C5×C10, D52, D5×C10, C53, D5×C52, C5×C5⋊D5, C5×D52
Quotients: C1, C2, C22, C5, D5, C10, D10, C2×C10, C5×D5, D52, D5×C10, C5×D52
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)
(1 2 3 4 5)(6 10 9 8 7)(11 12 13 14 15)(16 20 19 18 17)
(1 7)(2 8)(3 9)(4 10)(5 6)(11 17)(12 18)(13 19)(14 20)(15 16)
(1 5 4 3 2)(6 10 9 8 7)(11 12 13 14 15)(16 17 18 19 20)
(1 15)(2 11)(3 12)(4 13)(5 14)(6 20)(7 16)(8 17)(9 18)(10 19)
G:=sub<Sym(20)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,2,3,4,5)(6,10,9,8,7)(11,12,13,14,15)(16,20,19,18,17), (1,7)(2,8)(3,9)(4,10)(5,6)(11,17)(12,18)(13,19)(14,20)(15,16), (1,5,4,3,2)(6,10,9,8,7)(11,12,13,14,15)(16,17,18,19,20), (1,15)(2,11)(3,12)(4,13)(5,14)(6,20)(7,16)(8,17)(9,18)(10,19)>;
G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20), (1,2,3,4,5)(6,10,9,8,7)(11,12,13,14,15)(16,20,19,18,17), (1,7)(2,8)(3,9)(4,10)(5,6)(11,17)(12,18)(13,19)(14,20)(15,16), (1,5,4,3,2)(6,10,9,8,7)(11,12,13,14,15)(16,17,18,19,20), (1,15)(2,11)(3,12)(4,13)(5,14)(6,20)(7,16)(8,17)(9,18)(10,19) );
G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20)], [(1,2,3,4,5),(6,10,9,8,7),(11,12,13,14,15),(16,20,19,18,17)], [(1,7),(2,8),(3,9),(4,10),(5,6),(11,17),(12,18),(13,19),(14,20),(15,16)], [(1,5,4,3,2),(6,10,9,8,7),(11,12,13,14,15),(16,17,18,19,20)], [(1,15),(2,11),(3,12),(4,13),(5,14),(6,20),(7,16),(8,17),(9,18),(10,19)]])
G:=TransitiveGroup(20,124);
80 conjugacy classes
class | 1 | 2A | 2B | 2C | 5A | 5B | 5C | 5D | 5E | ··· | 5X | 5Y | ··· | 5AR | 10A | ··· | 10H | 10I | ··· | 10AB | 10AC | 10AD | 10AE | 10AF |
order | 1 | 2 | 2 | 2 | 5 | 5 | 5 | 5 | 5 | ··· | 5 | 5 | ··· | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 10 | 10 | 10 | 10 |
size | 1 | 5 | 5 | 25 | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 5 | ··· | 5 | 10 | ··· | 10 | 25 | 25 | 25 | 25 |
80 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | ||||||
image | C1 | C2 | C2 | C5 | C10 | C10 | D5 | D10 | C5×D5 | D5×C10 | D52 | C5×D52 |
kernel | C5×D52 | D5×C52 | C5×C5⋊D5 | D52 | C5×D5 | C5⋊D5 | C5×D5 | C52 | D5 | C5 | C5 | C1 |
# reps | 1 | 2 | 1 | 4 | 8 | 4 | 4 | 4 | 16 | 16 | 4 | 16 |
Matrix representation of C5×D52 ►in GL4(𝔽11) generated by
9 | 0 | 0 | 0 |
0 | 9 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 3 | 10 |
0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 3 | 10 |
0 | 0 | 8 | 8 |
0 | 10 | 0 | 0 |
1 | 3 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
1 | 3 | 0 | 0 |
0 | 10 | 0 | 0 |
0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 |
G:=sub<GL(4,GF(11))| [9,0,0,0,0,9,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,3,1,0,0,10,0],[1,0,0,0,0,1,0,0,0,0,3,8,0,0,10,8],[0,1,0,0,10,3,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,3,10,0,0,0,0,1,0,0,0,0,1] >;
C5×D52 in GAP, Magma, Sage, TeX
C_5\times D_5^2
% in TeX
G:=Group("C5xD5^2");
// GroupNames label
G:=SmallGroup(500,50);
// by ID
G=gap.SmallGroup(500,50);
# by ID
G:=PCGroup([5,-2,-2,-5,-5,-5,808,10004]);
// Polycyclic
G:=Group<a,b,c,d,e|a^5=b^5=c^2=d^5=e^2=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations